Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Appl Environ Microbiol ; : e0222223, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624199

RESUMO

Fungal phytopathogens cause significant reductions in agricultural yields annually, and overusing chemical fungicides for their control leads to environmental pollution and the emergence of resistant pathogens. Exploring natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We isolated and characterized a novel bacterial strain associated with the species Burkholderia cenocepacia, termed APO9, which strongly inhibits Zymoseptoria tritici, a commercially important pathogenic fungus causing Septoria tritici blotch in wheat. Additionally, this strain exhibits inhibitory activity against four other phytopathogens. We found that physical contact plays a crucial role for APO9's antagonistic capacity. Genome sequencing of APO9 and biosynthetic gene cluster (BGC) analysis identified nine classes of BGCs and three types of secretion systems (types II, III, and IV), which may be involved in the inhibition of Z. tritici and other pathogens. To identify genes driving APO9's inhibitory activity, we screened a library containing 1,602 transposon mutants and identified five genes whose inactivation reduced inhibition efficiency. One such gene encodes for a diaminopimelate decarboxylase located in a terpenoid biosynthesis gene cluster. Phylogenetic analysis revealed that while some of these genes are also found across the Burkholderia genus, as well as in other Betaproteobacteria, the combination of these genes is unique to the Burkholderia cepacia complex. These findings suggest that the inhibitory capacity of APO9 is complex and not limited to a single mechanism, and may play a role in the interaction between various Burkholderia species and various phytopathogens within diverse plant ecosystems. IMPORTANCE: The detrimental effects of fungal pathogens on crop yields are substantial. The overuse of chemical fungicides contributes not only to environmental pollution but also to the emergence of resistant pathogens. Investigating natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We discovered and examined a unique bacterial strain that demonstrates significant inhibitory activity against several phytopathogens. Our research demonstrates that this strain has a wide spectrum of inhibitory actions against plant pathogens, functioning through a complex mechanism. This plays a vital role in the interactions between plant microbiota and phytopathogens.

2.
Nat Commun ; 15(1): 3147, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605009

RESUMO

Plasmids are pivotal in driving bacterial evolution through horizontal gene transfer. Here, we investigated 3467 human gut microbiome samples across continents and disease states, analyzing 11,086 plasmids. Our analyses reveal that plasmid dispersal is predominantly stochastic, indicating neutral processes as the primary driver of their wide distribution. We find that only 20-25% of plasmid DNA is being selected in various disease states, constraining its distribution across hosts. Selective pressures shape specific plasmid segments with distinct ecological functions, influenced by plasmid mobilization lifestyle, antibiotic usage, and inflammatory gut diseases. Notably, these elements are more commonly shared within groups of individuals with similar health conditions, such as Inflammatory Bowel Disease (IBD), regardless of geographic location across continents. These segments contain essential genes such as iron transport mechanisms- a distinctive gut signature of IBD that impacts the severity of inflammation. Our findings shed light on mechanisms driving plasmid dispersal and selection in the human gut, highlighting their role as carriers of vital gene pools impacting bacterial hosts and ecosystem dynamics.


Assuntos
Ecossistema , Doenças Inflamatórias Intestinais , Humanos , Plasmídeos/genética , Bactérias/genética , Antibacterianos , Transferência Genética Horizontal , Doenças Inflamatórias Intestinais/genética
3.
bioRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562768

RESUMO

Mitochondria are highly dynamic double membrane-bound organelles that exist in a semi-continuous network. Mitochondrial morphology arises from the complex interplay of numerous processes, including opposing fission and fusion dynamics and the formation of highly organized cristae invaginations of the inner membrane. While extensive work has examined the mechanisms of mitochondrial fission, it remains unclear how fission is coordinated across two membrane bilayers and how mitochondrial inner membrane organization is coupled with mitochondrial fission dynamics. Previously, the yeast protein Mdm33 was implicated in facilitating fission by coordinating with inner membrane homeostasis pathways. However, Mdm33 is not conserved outside fungal species and its precise mechanistic role remains unclear. Here, we use a bioinformatic approach to identify a putative structural ortholog of Mdm33 in humans, CCDC51 (also called MITOK). We find that the mitochondrial phenotypes associated with altered CCDC51 levels implicate the protein in mitochondrial fission dynamics. Further, using timelapse microscopy, we spatially and temporally resolve Mdm33 and CCDC51 to a subset of mitochondrial fission events. Finally, we show that CCDC51 can partially rescue yeast Δmdm33 cells, indicating the proteins are functionally analogous. Our data reveal that Mdm33/CCDC51 are conserved mediators of mitochondrial morphology and suggest the proteins play a crucial role in maintaining normal mitochondrial dynamics and organelle homeostasis.

4.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474079

RESUMO

Mitochondria are commonly perceived as "cellular power plants". Intriguingly, power conversion is not their only function. In the first part of this paper, we review the role of mitochondria in the evolution of eukaryotic organisms and in the regulation of the human body, specifically focusing on cancer and autism in relation to mitochondrial dysfunction. In the second part, we overview our previous works, revealing the physical principles of operation for proton-pumping complexes in the inner mitochondrial membrane. Our proposed simple models reveal the physical mechanisms of energy exchange. They can be further expanded to answer open questions about mitochondrial functions and the medical treatment of diseases associated with mitochondrial disorders.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Humanos , Mitocôndrias/fisiologia , Membranas Mitocondriais/metabolismo , Bombas de Próton/metabolismo , Física , Biologia
5.
Air Med J ; 43(2): 84-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38490790

RESUMO

Current first-line therapies for seizure management recommend benzodiazepines, which target gamma-aminobutyric acid type A channels to stop the seizure activity. However, seizures may be refractory to traditional first-line therapies, transitioning into status epilepticus and becoming resistant to gamma-aminobutyric acid type A augmenting drugs. Although there are other antiseizure medications available for clinicians to use in the intensive care unit, these options can be less readily available outside of the intensive care unit and entirely absent in the prehospital setting. Instead, patients frequently receive multiple doses of first-line agents with increased risk of hemodynamic or airway collapse. Ketamine is readily available in the prehospital setting and emergency department, has well-established antiseizure effects with a favorable safety profile, and is a drug often used for several other indications. This article aimed to explore the utilization of ketamine for seizure management in the prehospital setting, reviewing seizure pathophysiology, established treatment mechanisms of action and pharmacokinetics, and potential benefits of early ketamine use in status epilepticus.


Assuntos
Ketamina , Estado Epiléptico , Humanos , Ketamina/uso terapêutico , Anticonvulsivantes/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Convulsões/tratamento farmacológico , Serviço Hospitalar de Emergência , Ácido gama-Aminobutírico/uso terapêutico
6.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328188

RESUMO

PPTC7 is a mitochondrial-localized PP2C phosphatase that maintains mitochondrial protein content and metabolic homeostasis. We previously demonstrated that knockout of Pptc7 elevates mitophagy in a BNIP3- and NIX-dependent manner, but the mechanisms by which PPTC7 influences receptor-mediated mitophagy remain ill-defined. Here, we demonstrate that loss of PPTC7 upregulates BNIP3 and NIX post-transcriptionally and independent of HIF-1α stabilization. On a molecular level, loss of PPTC7 prolongs the half-life of BNIP3 and NIX while blunting their accumulation in response to proteasomal inhibition, suggesting that PPTC7 promotes the ubiquitin-mediated turnover of BNIP3 and NIX. Consistently, overexpression of PPTC7 limits the accumulation of BNIP3 and NIX protein levels in response to pseudohypoxia, a well-known inducer of mitophagy. This PPTC7-mediated suppression of BNIP3 and NIX protein expression requires an intact PP2C catalytic motif but is surprisingly independent of its mitochondrial targeting, indicating that PPTC7 influences mitophagy outside of the mitochondrial matrix. We find that PPTC7 exists in at least two distinct states in cells: a longer isoform, which likely represents full length protein, and a shorter isoform, which likely represents an imported, matrix-localized phosphatase pool. Importantly, anchoring PPTC7 to the outer mitochondrial membrane is sufficient to blunt BNIP3 and NIX accumulation, and proximity labeling and fluorescence co-localization experiments suggest that PPTC7 associates with BNIP3 and NIX within the native cellular environment. Importantly, these associations are enhanced in cellular conditions that promote BNIP3 and NIX turnover, demonstrating that PPTC7 is dynamically recruited to BNIP3 and NIX to facilitate their degradation. Collectively, these data reveal that a fraction of PPTC7 dynamically localizes to the outer mitochondrial membrane to promote the proteasomal turnover of BNIP3 and NIX.

7.
Nat Microbiol ; 8(12): 2244-2252, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996708

RESUMO

Microbial communities drive global biogeochemical cycles and shape the health of plants and animals-including humans. Their structure and function are determined by ecological and environmental interactions that govern the assembly, stability and evolution of microbial communities. A widely held view is that antagonistic interactions such as competition predominate in microbial communities and are ecologically more important than synergistic interactions-for example, mutualism or commensalism. Over the past decade, however, a more nuanced picture has emerged, wherein bacteria, archaea and fungi exist within interactive networks in which they exchange essential and non-essential metabolites. These metabolic interactions profoundly impact not only the physiology, ecology and evolution of the strains involved, but are also central to the functioning of many, if not all, microbiomes. Therefore, we advocate for a balanced view of microbiome ecology that encompasses both synergistic and antagonistic interactions as key forces driving the structure and dynamics within microbial communities.


Assuntos
Microbiota , Animais , Humanos , Simbiose , Bactérias/genética , Bactérias/metabolismo , Archaea
8.
bioRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37873150

RESUMO

Mitochondrial cristae architecture is crucial for optimal respiratory function of the organelle. Cristae shape is maintained in part by the mitochondrial inner membrane-localized MICOS complex. While MICOS is required for normal cristae morphology, the precise mechanistic role of each of the seven human MICOS subunits, and how the complex coordinates with other cristae shaping factors, has not been fully determined. Here, we examine the MICOS complex in Schizosaccharomyces pombe, a minimal model whose genome only encodes for four core subunits. Using an unbiased proteomics approach, we identify a poorly characterized inner mitochondrial membrane protein that interacts with MICOS and is required to maintain cristae morphology, which we name Mmc1. We demonstrate that Mmc1 works in concert with MICOS complexes to promote normal mitochondrial morphology and respiratory function. Bioinformatic analyses reveal that Mmc1 is a distant relative of the Dynamin-Related Protein (DRP) family of GTPases, which are well established to shape and remodel membranes. We find that, like DRPs, Mmc1 self-associates and forms high molecular weight assemblies. Interestingly, however, Mmc1 is a pseudoenzyme that lacks key residues required for GTP binding and hydrolysis, suggesting it does not dynamically remodel membranes. These data are consistent with a model in which Mmc1 stabilizes cristae architecture by acting as a scaffold to support cristae ultrastructure on the matrix side of the inner membrane. Our study reveals a new class of proteins that evolved early in fungal phylogeny and is required for the maintenance of cristae architecture. This highlights the possibility that functionally analogous proteins work with MICOS to establish cristae morphology in metazoans.

9.
Nat Commun ; 14(1): 6431, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833277

RESUMO

PPTC7 is a resident mitochondrial phosphatase essential for maintaining proper mitochondrial content and function. Newborn mice lacking Pptc7 exhibit aberrant mitochondrial protein phosphorylation, suffer from a range of metabolic defects, and fail to survive beyond one day after birth. Using an inducible knockout model, we reveal that loss of Pptc7 in adult mice causes marked reduction in mitochondrial mass and metabolic capacity with elevated hepatic triglyceride accumulation. Pptc7 knockout animals exhibit increased expression of the mitophagy receptors BNIP3 and NIX, and Pptc7-/- mouse embryonic fibroblasts (MEFs) display a major increase in mitophagy that is reversed upon deletion of these receptors. Our phosphoproteomics analyses reveal a common set of elevated phosphosites between perinatal tissues, adult liver, and MEFs, including multiple sites on BNIP3 and NIX, and our molecular studies demonstrate that PPTC7 can directly interact with and dephosphorylate these proteins. These data suggest that Pptc7 deletion causes mitochondrial dysfunction via dysregulation of several metabolic pathways and that PPTC7 may directly regulate mitophagy receptor function or stability. Overall, our work reveals a significant role for PPTC7 in the mitophagic response and furthers the growing notion that management of mitochondrial protein phosphorylation is essential for ensuring proper organelle content and function.


Assuntos
Proteínas Mitocondriais , Mitofagia , Animais , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitofagia/genética , Fibroblastos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
10.
J Cell Biol ; 222(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37540145

RESUMO

Mitochondria are highly dynamic double membrane-bound organelles that maintain their shape in part through fission and fusion. Mitochondrial fission is performed by a dynamin-related protein, Dnm1 (Drp1 in humans), that constricts and divides the mitochondria in a GTP hydrolysis-dependent manner. However, it is unclear whether factors inside mitochondria help coordinate the process and if Dnm1/Drp1 activity is sufficient to complete the fission of both mitochondrial membranes. Here, we identify an intermembrane space protein required for mitochondrial fission in yeast, which we propose to name Mdi1 (also named Atg44). Loss of Mdi1 causes mitochondrial hyperfusion due to defects in fission, but not the lack of Dnm1 recruitment to mitochondria. Mdi1 is conserved in fungal species, and its homologs contain an amphipathic α-helix, mutations of which disrupt mitochondrial morphology. One model is that Mdi1 distorts mitochondrial membranes to enable Dnm1 to robustly complete fission. Our work reveals that Dnm1 cannot efficiently divide mitochondria without the coordinated function of Mdi1 inside mitochondria.


Assuntos
Dinâmica Mitocondrial , Proteínas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Dinaminas/genética , Dinaminas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
11.
bioRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034761

RESUMO

Mitochondria are highly dynamic double membrane-bound organelles that maintain their shape in part through fission and fusion. Mitochondrial fission is performed by the dynamin-related protein Dnm1 (Drp1 in humans), a large GTPase that constricts and divides the mitochondria in a GTP hydrolysis-dependent manner. However, it is unclear whether factors inside mitochondria help coordinate the process and if Dnm1/Drp1 activity alone is sufficient to complete fission of both mitochondrial membranes. Here, we identify an intermembrane space protein required for mitochondrial fission in yeast, which we propose to name Mdi1. Loss of Mdi1 leads to hyper-fused mitochondria networks due to defects in mitochondrial fission, but not lack of Dnm1 recruitment to mitochondria. Mdi1 plays a conserved role in fungal species and its homologs contain a putative amphipathic α-helix, mutations in which disrupt mitochondrial morphology. One model to explain these findings is that Mdi1 associates with and distorts the mitochondrial inner membrane to enable Dnm1 to robustly complete fission. Our work reveals that Dnm1 cannot efficiently divide mitochondria without the coordinated function of a protein that resides inside mitochondria.

12.
J Cell Biol ; 222(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36795401

RESUMO

Mitochondria play critical roles in cellular metabolism and to maintain their integrity, they are regulated by several quality control pathways, including mitophagy. During BNIP3/BNIP3L-dependent receptor-mediated mitophagy, mitochondria are selectively targeted for degradation by the direct recruitment of the autophagy protein LC3. BNIP3 and/or BNIP3L are upregulated situationally, for example during hypoxia and developmentally during erythrocyte maturation. However, it is not well understood how they are spatially regulated within the mitochondrial network to locally trigger mitophagy. Here, we find that the poorly characterized mitochondrial protein TMEM11 forms a complex with BNIP3 and BNIP3L and co-enriches at sites of mitophagosome formation. We find that mitophagy is hyper-active in the absence of TMEM11 during both normoxia and hypoxia-mimetic conditions due to an increase in BNIP3/BNIP3L mitophagy sites, supporting a model that TMEM11 spatially restricts mitophagosome formation.


Assuntos
Proteínas de Membrana , Membranas Mitocondriais , Mitofagia , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Hipóxia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo
13.
mSystems ; 8(2): e0083622, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36815773

RESUMO

Predicting interspecies interactions is a key challenge in microbial ecology given that interactions shape the composition and functioning of microbial communities. However, predicting microbial interactions is challenging because they can vary considerably depending on species' metabolic capabilities and environmental conditions. Here, we employ machine learning models to predict pairwise interactions between culturable bacteria based on their phylogeny, monoculture growth capabilities, and interactions with other species. We trained our models on one of the largest available pairwise interactions data set containing over 7,500 interactions between 20 species from two taxonomic groups that were cocultured in 40 different carbon environments. Our models accurately predicted both the sign (accuracy of 88%) and the strength of effects (R2 of 0.87) species had on each other's growth. Encouragingly, predictions with comparable accuracy could be made even when not relying on information about interactions with other species, which are often hard to measure. However, species' monoculture growth was essential to the model, as predictions based solely on species' phylogeny and inferred metabolic capabilities were significantly less accurate. These results bring us one step closer to a predictive understanding of microbial communities, which is essential for engineering beneficial microbial consortia. IMPORTANCE In order to understand the function and structure of microbial communities, one must know all pairwise interactions that occur between the different species within the community, as these interactions shape the community's structure and functioning. However, measuring all pairwise interactions can be an extremely difficult task especially when dealing with big complex communities. Because of that, predicting interspecies interactions is a key challenge in microbial ecology. Here, we use machine learning models in order to accurately predict the type and strength of interactions. We trained our models on one of the largest available pairwise interactions data set, containing over 7,500 interactions between 20 different species that were cocultured in 40 different environments. Our results show that, in general, accurate predictions can be made, and that the ability of each species to grow on its own in the given environment contributes the most to predictions. Being able to predict microbial interactions would put us one step closer to predicting the functionality of microbial communities and to rationally microbiome engineering.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Consórcios Microbianos , Interações Microbianas , Microbiota/genética
14.
Elife ; 122023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36852917

RESUMO

Microorganisms are found in diverse communities whose structure and function are determined by interspecific interactions. Just as single species seldom exist in isolation, communities as a whole are also constantly challenged and affected by external species. Though much work has been done on characterizing how individual species affect each other through pairwise interactions, the joint effects of multiple species on a single (focal) species remain underexplored. As such, it is still unclear how single-species effects combine to a community-level effect on a species of interest. To explore this relationship, we assayed thousands of communities of two, three, and four bacterial species, measuring the effect of single, pairs of, and trios of 61 affecting species on six different focal species. We found that when multiple species each have a negative effect on a focal species, their joint effect is typically not given by the sum of the effects of individual affecting species. Rather, they are dominated by the strongest individual-species effect. Therefore, while joint effects of multiple species are often non-additive, they can still be derived from the effects of individual species, making it plausible to map complex interaction networks based on pairwise measurements. This finding is important for understanding the fate of species introduced into an occupied environment and is relevant for applications in medicine and agriculture, such as probiotics and biocontrol agents, as well as for ecological questions surrounding migrating and invasive species.


Bacteria can be found almost everywhere on earth. Often, multiple species of bacteria live together in communities, which perform vital roles that affect everything from our health to the planet's ecosystems. A single species within this community can sometimes be particularly important, for example if it is causing disease in its host or producing a vital nutrient. However, the other species within this community can influence the growth of this focus species, either by inhibiting or promoting it. It is challenging to predict how a certain species is going to fare within a bacterial community as it remains partly unclear how groups of bacteria affect each other. Some theory suggests that adding up or averaging the influences of all the bacteria in a community would be the best way to predict what will happen. To study these microorganism interactions, Baichman-Kass, Song and Friedman monitored thousands of bacterial communities, consisting of two to four different species. By using species that express fluorescent proteins, they were able to measure the abundance of the specific bacteria of interest in each of these communities. Baichman-Kass et al. found that in communities where all the species were only competing with or supporting the bacteria of interest, the individual affecting species with the strongest effect dominated the combined effect. This 'strongest effect' model offered accurate predictions for the joint effects of competitive communities, however predicting outcomes in supporting communities proved more difficult. This could indicate that the mechanisms for supporting other species are more intricate than the means of competition. The study of Baichman-Kass et al. brings us closer to understanding how the abundance of a given bacterium can be influenced through the actions of other bacterial species. Among other uses, it may be important in medicine, where it is desirable to reduce the amount of a bacteria that causes disease, or in agriculture where bacteria that protect plants from diseases and fungi, need to be boosted. Improving our ability to predict the outcome of introducing new species to an environment increases both the effectiveness and possible scope of such applications.


Assuntos
Agricultura , Bactérias , Espécies Introduzidas
15.
Jpn J Radiol ; 41(5): 488-499, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36607548

RESUMO

Running is an increasingly popular sport and form of exercise. Because of the importance of the hip in the biomechanics involved with running, forming the primary connection between the axial and appendicular skeleton of the lower extremities, accurate diagnosis and reporting of hip pathology are vital for appropriate management. This review provides an overview of the most common hip pathologies and injuries encountered in runners. Radiologic studies, primarily conventional radiography and magnetic resonance imaging (MRI) provide useful diagnostic information and should be used in combination with clinical findings to help guide therapeutic management.


Assuntos
Lesões do Quadril , Quadril , Corrida , Humanos , Corrida/lesões , Quadril/diagnóstico por imagem , Lesões do Quadril/diagnóstico por imagem
16.
Pediatr Blood Cancer ; 70 Suppl 4: e29995, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36184758

RESUMO

Ovarian tumors in children are uncommon. Like those arising in the adult population, they may be broadly divided into germ cell, sex cord, and surface epithelium subtypes; however, germ cell tumors comprise the majority of lesions in children, whereas tumors of surface epithelial origin predominate in adults. Diagnostic workup, including the use of imaging, requires an approach that often differs from that required in an adult. This paper offers consensus recommendations for imaging of pediatric patients with a known or suspected primary ovarian malignancy at diagnosis and during follow-up.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Neoplasias Ovarianas , Adulto , Feminino , Criança , Humanos , Ressonância de Plasmônio de Superfície , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/epidemiologia , Neoplasias Embrionárias de Células Germinativas/diagnóstico por imagem , Diagnóstico por Imagem
17.
Pediatr Blood Cancer ; 70 Suppl 4: e29988, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36184829

RESUMO

Primary intratesticular tumors are uncommon in children, but incidence and risk of malignancy both sharply increase during adolescence. Ultrasound is the mainstay for imaging the primary lesion, and cross-sectional modalities are often required for evaluation of regional or distant disease. However, variations to this approach are dictated by additional clinical and imaging nuances. This paper offers consensus recommendations for imaging of pediatric patients with a known or suspected primary testicular malignancy at diagnosis and during follow-up.


Assuntos
Ressonância de Plasmônio de Superfície , Neoplasias Testiculares , Masculino , Adolescente , Humanos , Criança , Estudos Transversais , Neoplasias Testiculares/diagnóstico por imagem , Neoplasias Testiculares/patologia , Ultrassonografia/métodos , Imageamento por Ressonância Magnética/métodos
18.
Artigo em Inglês | MEDLINE | ID: mdl-36329759

RESUMO

A fundamental role of membrane-bound organelles is the compartmentalization and organization of cellular processes. Mitochondria perform an immense number of metabolic chemical reactions and to efficiently regulate these, the organelle organizes its inner membrane into distinct morphological domains, including its characteristic cristae membranes. In recent years, a structural feature of increasing apparent importance is the inter-connection between the mitochondrial exterior and other organelles at membrane contact sites (MCSs). Mitochondria form MCSs with almost every other organelle in the cell, including the endoplasmic reticulum, lipid droplets, and lysosomes, to coordinate global cellular metabolism with mitochondrial metabolism. However, these MCSs not only facilitate the transport of metabolites between organelles, but also directly impinge on the physical shape and functional organization inside mitochondria. In this review, we highlight recent advances in our understanding of how physical connections between other organelles and mitochondria both directly and indirectly influence the internal architecture of mitochondria.

19.
Nat Methods ; 19(11): 1419-1426, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36280718

RESUMO

Structured illumination microscopy (SIM) doubles the spatial resolution of a fluorescence microscope without requiring high laser powers or specialized fluorophores. However, the excitation of out-of-focus fluorescence can accelerate photobleaching and phototoxicity. In contrast, light-sheet fluorescence microscopy (LSFM) largely avoids exciting out-of-focus fluorescence, thereby enabling volumetric imaging with low photobleaching and intrinsic optical sectioning. Combining SIM with LSFM would enable gentle three-dimensional (3D) imaging at doubled resolution. However, multiple orientations of the illumination pattern, which are needed for isotropic resolution doubling in SIM, are challenging to implement in a light-sheet format. Here we show that multidirectional structured illumination can be implemented in oblique plane microscopy, an LSFM technique that uses a single objective for excitation and detection, in a straightforward manner. We demonstrate isotropic lateral resolution below 150 nm, combined with lower phototoxicity compared to traditional SIM systems and volumetric acquisition speed exceeding 1 Hz.


Assuntos
Imageamento Tridimensional , Iluminação , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Fotodegradação
20.
Glob Chang Biol ; 28(22): 6771-6788, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36045489

RESUMO

Dryland riparian woodlands are considered to be locally buffered from droughts by shallow and stable groundwater levels. However, climate change is causing more frequent and severe drought events, accompanied by warmer temperatures, collectively threatening the persistence of these groundwater dependent ecosystems through a combination of increasing evaporative demand and decreasing groundwater supply. We conducted a dendro-isotopic analysis of radial growth and seasonal (semi-annual) carbon isotope discrimination (Δ13 C) to investigate the response of riparian cottonwood stands to the unprecedented California-wide drought from 2012 to 2019, along the largest remaining free-flowing river in Southern California. Our goals were to identify principal drivers and indicators of drought stress for dryland riparian woodlands, determine their thresholds of tolerance to hydroclimatic stressors, and ultimately assess their vulnerability to climate change. Riparian trees were highly responsive to drought conditions along the river, exhibiting suppressed growth and strong stomatal closure (inferred from reduced Δ13 C) during peak drought years. However, patterns of radial growth and Δ13 C were quite variable among sites that differed in climatic conditions and rate of groundwater decline. We show that the rate of groundwater decline, as opposed to climate factors, was the primary driver of site differences in drought stress, and trees showed greater sensitivity to temperature at sites subjected to faster groundwater decline. Across sites, higher correlation between radial growth and Δ13 C for individual trees, and higher inter-correlation of Δ13 C among trees were indicative of greater drought stress. Trees showed a threshold of tolerance to groundwater decline at 0.5 m year-1 beyond which drought stress became increasingly evident and severe. For sites that exceeded this threshold, peak physiological stress occurred when total groundwater recession exceeded ~3 m. These findings indicate that drought-induced groundwater decline associated with more extreme droughts is a primary threat to dryland riparian woodlands and increases their susceptibility to projected warmer temperatures.


Assuntos
Secas , Água Subterrânea , Isótopos de Carbono/análise , Ecossistema , Florestas , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...